Note

A simplified synthesis of α -D-galactopyranose 1,3,4,6-tetraacetate

GORDON J. F. CHITTENDEN

Department of Organic Chemistry, The University, 6525 ED Nijmegen (The Netherlands) (Received March 26th, 1988; accepted for publication, May 12th, 1988)

The title tetraacetate 1 has been used¹⁻¹⁰ in syntheses of D-galactose-containing di- and oligo-saccharides and, *inter alia*, for the preparation of D-galactose 2-phosphate¹¹ and 2-sulfate¹², partially methylated^{13,14} and benzylated¹⁵ derivatives of D-galactose, and kojic acid diacetate¹⁶. It is usually prepared by the method of Helferich and Zirner¹, involving three stages from D-galactose with a modest overall yield (32-36%).

A simplified route to 1 in good yield (68-72%) from β -D-galactopyranose pentaacetate (2) resulted from other studies. When a solution of 2 in trifluoroacetic acid-water (10:1) was maintained at room temperature for 5 h, t.l.c. revealed one major component, and ~70% of 1 could be isolated and identified by its ¹H-n.m.r. spectrum.

Treatment of β -D-glucopyranose pentaacetate (4) with aqueous trifluoroacetic acid, as for 2, gave a syrupy ~2:1 (n.m.r. data) mixture of 2,3,4,6-tetra-O-acetyl- α , β -D-glucopyranose (5 and 6) characterised¹⁷ as the 2,4-dinitrophenyl β -D-glycoside 7.

The pentaacetates of α -D-galactopyranose (3) and α -D-glucopyranose (8), which are 1,2-cis compounds, were recovered unchanged when treated with aqueous trifluoroacetic acid as for 2.

The formation of 1 from 2 and the mixture of 5 and 6 from 4 must occur *via* the 1,2-acetoxonium ions 9 and 10, respectively, since AcO-1 is good leaving group in solvolyses with neighbouring-group participation ¹⁸. The ions 9 and 10 behave differently on hydrolysis. The expected ^{19,20} *cis* pathway is followed by 9, probably *via* the ortho acid and participation of AcO-4, yielding mainly 1 as the kinetic product. With 10, the ortho-acid intermediate could react with water to give the α -product 5 or by *trans* opening ^{20,21} to give the β -product 6. Mutarotation then occurs to give the observed mixture of 5 and 6. These compounds are known²² to equilibrate in the presence of trifluoroacetic acid.

The presence of water in the reaction of 2 with trifluoroacetic acid is essential

NOTE 141

for the formation of 1 since, in its absence, an α,β -mixture of the 2,3,4,6-tetraacetates (11 and 12) was formed and characterised ¹⁷ as the 2,4-dinitrophenyl β -D-glycoside 13. The peracetate 4 reacted in an analogous manner. These reactions probably involve displacement of AcO-1 by a trifluoroacetoxy group, followed by hydrolysis and mutarotation. Various 1,2-trans acetates undergo direct replacement reactions with formic acid²³.

The observed unreactivity of the 1,2-cis pentaacetates 3 and 8 reflects the lack of neighbouring assistance in the expulsion of AcO-1, and front-side participation is to be expected only in the presence of strong organic acids²⁴.

Trifluoroacetic acid-water (9:1) has been recommended²⁵ for the cleavage of isopropylidene and benzylidene acetals and is said to be compatible with other substituents, including esters. This compatibility may be valid only for relatively short reaction periods.

EXPERIMENTAL

Optical rotations were determined with a Perkin-Elmer Model 241 automatic polarimeter on 1% solutions in chloroform. T.l.c. was performed (Kieselgel 60, Merck) with 1,2-dimethoxyethane-cyclohexane (3:2) and detection by charring with sulphuric acid. ¹H-N.m.r. spectra were recorded with a Varian EM 2940 (90 MHz) spectrometer on solutions in CDCl₃ (internal Me₄Si).

Reactions of trifluoroacetic acid-water.—(a) With β-D-galactopyranose pentaacetate (2). A solution of 2^{26} (10 g) in trifluoroacetic acid (35 mL) containing water (3.5 mL) was stirred at room temperature for 5 h, then concentrated *in vacuo* at 35°, and toluene (3 x 40 mL) was distilled *in vacuo* from the residue. The residue, which contained one major component, RF 0.52 (t.l.c.), was recrystallised from isopropyl ether to give 1,3,4,6-tetra-O-acetyl-α-D-galactopyranose (1; 6.01-6.42 g, 68-72%), m.p. 145-147°, $[\alpha]_D^{20}$ + 145°; lit. ¹m.p. 151°, $[\alpha]_D^{18}$ + 142.7°. ¹H-N.m.r. data (CDCl₃): δ 6.3 (d, $J_{1,2}$ 4.0 Hz, H-1), 5.45 (m, H-4), 5.15 (dd, J 4 and 4 Hz, H-3),

142 NOTE

3.95-4.45 (m, H-2,5,6), 2.18, 2.15, 2.05, 2.02 (4 s, 4 Ac).

A solution of 2 (2.0 g) in trifluoroacetic acid (7.5 mL) was kept for 5 h at room temperature, water (1.0 mL) was then added, and the mixture was concentrated *in vacuo* at 35°. Toluene (4 x 30 mL) was distilled *in vacuo* from the residue, to leave 2,3,4,6-tetra-O-acetyl- α , β -D-galactopyranose (11 + 12) as a colourless syrup (1.76 g), $[\alpha]_D^{2D} + 43^\circ$.

A mixture of above product, 1-fluoro-2,4-dinitrobenzene (1.0 g), and DABCO (2.0 g) was dissolved in N,N-dimethylformamide (15 mL) and stirred at room temperature for 2 h. The mixture was concentrated *in vacuo* to leave an oil which was dissolved in dichloromethane (200 mL) and then washed with saturated aqueous sodium hydrogencarbonate (100 mL) and water (2 x 100 mL). The dried (Na₂SO₄) extract was concentrated *in vacuo* to leave a glass which was crystallised from ethanol to give 2,4-dinitrophenyl 2,3,4,6-tetra-O-acetyl- β -D-galactopyranoside (13) as pale-yellow needles (2.05 g, 78%), m.p. 172–176°, $[\alpha]_D^{20}$ +66.5°; lit.²⁷ m.p. 174–176°, $[\alpha]_D$ +68°.

- (b) With α -D-galactopyranose pentaacetate (3). When 3^{26} (3.0 g) was treated as in (a), 3 (2.67 g, 89%) was recovered; m.p. 94–96° (from ethanol), $[\alpha]_D^{21} + 106^\circ$; lit. 26 m.p. 95.5°, $[\alpha]_D + 107^\circ$.
- (c) With β -D-glucopyranose pentaacetate (4). Treatment of 4^{26} (5.0 g) as in (a) yielded syrupy 2,3,4,6-tetra-O-acetyl- α , β -D-glucopyranose (5 + 6). A portion (1.0 g) of the product was characterised 17, vide supra, as 2,4-dinitrophenyl 2,3,4,6-tetra-O-acetyl- β -D-glucopyranoside (7; 1.08 g, 72%), m.p. 176–178° (from ethanol), $[\alpha]_D^{20}$ + 34°; lit. 27 m.p. 177–179°, $[\alpha]_D$ + 33°.

A solution of 4 (3.0 g) in trifluoroacetic acid (10 mL) was kept for 5 h at room temperature, water (1.4 mL) was then added, and the mixture was concentrated *in vacuo* at 35°. Toluene (4 x 40 mL) was distilled *in vacuo* from the residual syrup to give a clear glass (2.63 g), $[\alpha]_D^{21} + 67^\circ$. The product was treated as described above, to give 7 (3.3 g, 74%), m.p. 174–176°, $[\alpha]_D^{20} + 32.6^\circ$.

(d) With α -D-glucopyranose pentaacetate (8). After treatment of 8^{26} (2.0 g) as described in (a), 8 (1.78 g, 89%) was recovered; m.p. 110–112° (from ethanol), $[\alpha]_D^{20} + 101^\circ$; lit. ²⁶ m.p. 112–113°, $[\alpha]_D^{20} + 102^\circ$.

REFERENCES

¹ B. Helferich and J. Zirner, *Chem. Ber.*, 95 (1962) 2604–2612.

² K. L. MATTA, Carbohydr. Res., 31 (1973) 410-412.

³ S. KAMIYA, F. KONISHI, AND S. ESAKI, Agric. Biol. Chem., 38 (1974) 1785-1790.

⁴ B Helferich, W. M. Mueller, and S. Karbach, Justus Liebigs Ann. Chem., (1974) 1514-1521.

⁵ R. U. Lemieux, K. B. Hendricks, R. V. Stick, and K. J. James, *J. Am. Chem. Soc.*, 97 (1975) 4056–4062.

⁶ R. U. Lemieux and H. Driguez, J. Am. Chem. Soc., 97 (1975) 4069-4075.

⁷ S. Kamiya, S Esaki, and F. Konishi, Agric. Biol. Chem., 40 (1976) 273-276.

- 8 P. J. GAREGG, I. J. GOLDSTEIN, AND T. IVERSEN, Acta. Chem. Scand., Ser. B, 30 (1976) 876-878.
- 9 P. J. GAREGG AND L. MARON, Acta. Chem. Scand., Ser. B, 33 (1979) 39-41.
- 10 H. J. Koerners, J. Verhoeven, and J. H. van Boom, Recl. Trav. Chim. Pays-Bas, 100 (1981) 65-72.
- 11 G. J. F. CHITTENDEN, W. K. ROBERTS, J. G. BUCHANAN, AND J. BADDILEY, *Biochem. J.*, 109 (1968) 597-602.
- 12 P. J. ARCHIBALD, M. D. FENN, AND A. B. ROY, Carbohydr. Res., 93 (1981) 177-190.
- 13 J. M. BERRY, Y. M. CHOY, AND G. G. DUTTON, Can. J. Chem., 52 (1974) 291-292.
- 14 I. O. MASTRONARDI, S. M. FLEMATTI, J. O. DEFERRARI, AND E. G. GROS, *Carbohydr. Res.*, 3 (1966) 177–183.
- 15 R. U. LEMIEUX AND T. KONDO, Carbohydr. Res. 35 (1974) c4-c6.
- 16 G. J. F. CHITTENDEN, Carbohydr. Res., 11 (1969) 424-427.
- 17 H. J. KOENERS, A. J. DE KOK, C. ROMERS, AND J. H. VAN BOOM, Recl. Trav. Chim. Pays-Bas, 99 (1980) 355-362.
- 18 R. U. Lemieux, Adv. Carbohydr. Chem., 9 (1954) 1-57.
- 19 C. B. Anderson, E. C. Friedrich, and S. Winstein, Tetrahedron Lett., (1963) 2037-2044.
- 20 H. PAULSEN, Adv. Carbohydr. Chem. Biochem., 26 (1971) 127-195; and references cited therein.
- 21 S. Hünig, Angew. Chem., 76 (1964) 400-412.
- 22 G. Excoffier, D. Gagnaire, and J. P. Utille, Carbohydr. Res., 39 (1975) 368-373.
- 23 H. RICHZENHEIN AND S. L. SAFWAT, Chem. Ber., 86 (1951) 947-950.
- 24 H. PAULSEN AND H. MEYBORG, Tetrahedron Lett., (1972), 3973-3976.
- 25 J. E. CHRISTENSEN AND L. GOODMAN, Carbohydr. Res., 7 (1968) 510-512.
- 26 M. L. Wolfrom and A. Thompson, Methods Carbohydr. Chem., 2 (1963) 211-215.
- 27 F. BALLARDIE, B. CAPON, J. D. G. SUTHERLAND, D. COCKER, AND M. L. SINNOTT, J. Chem. Soc., Perkin Trans. 1, (1973) 2418-2419.